The ⋆-value Equation and Wigner Distributions in Noncommutative Heisenberg algebras∗

نویسندگان

  • Marcos Rosenbaum
  • David Vergara
چکیده

We consider the quantum mechanical equivalence of the Seiberg-Witten map in the context of the Weyl-Wigner-Groenewold-Moyal phase-space formalism in order to construct a quantum mechanics over noncommutative Heisenberg algebras. The formalism is then applied to the exactly soluble Landau and harmonic oscillator problems in the 2-dimensional noncommutative phase-space plane, in order to derive their correct energy spectra and corresponding Wigner distributions. We compare our results with others that have previously appeared in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation quantization of noncommutative quantum mechanics and dissipation ∗

We review the main features of the Weyl-Wigner formulation of noncommutative quantum mechanics. In particular, we present a ⋆-product and a Moyal bracket suitable for this theory as well as the concept of noncommutative Wigner function. The properties of these quasi-distributions are discussed as well as their relation to the sets of ordinary Wigner functions and positive Liouville probability ...

متن کامل

Topics in Hidden Symmetries. Iv.

This note being devoted to some aspects of the inverse problem of representation theory explicates the links between researches on the Sklyanin algebras and the author’s (based on the noncommutative geometry) approach to the setting free of hidden symmetries in terms of ”the quantization of constants”. Namely, the Racah–Wigner algebra for the Sklyanin algebra is constructed. It may be considere...

متن کامل

Smooth * -algebras

Looking for the universal covering of the smooth non-commutative torus leads to a curve of associative multiplications on the space O M (R) ∼= OC(R ) of Laurent Schwartz which is smooth in the deformation parameter ~. The Taylor expansion in ~ leads to the formal Moyal star product. The non-commutative torus and this version of the Heisenberg plane are examples of smooth *-algebras: smooth in t...

متن کامل

Wigner Measures in Noncommutative Quantum Mechanics

We study the properties of quasi-distributions or Wigner measures in the context of noncommutative quantum mechanics. In particular, we obtain necessary and sufficient conditions for a phase-space function to be a noncommutative Wigner measure, for a Gaussian to be a noncommutative Wigner measure, and derive certain properties of the marginal distributions which are not shared by ordinary Wigne...

متن کامل

A note on power values of generalized derivation in prime ring and noncommutative Banach algebras

Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005